Acoustic Multi-Path Flowmeter

Fluvius TT
Fluvius TT

Application

HydroVision’s Fluvius TT is a velocity area open channel flowmeter which uses the acoustic “travel-time” method. It is used for various measurements of discharge in the hydrologic field.

ISP™ Technology

The flow meter combines intelligent signal processing (ISP) with correlation detection methods. It uses controlled signals, whose characteristics are imposed during the transmission phase (duration, frequency, level etc.). The reception is therefore based on the suitable filtering of these characteristics, possibly accounting for the perturbations brought by the environment.

The frequency modulated signals are processed on reception by correlating the received signal with a copy of the expected signal. The use of this Intelligent-Signal-Processing is justified for very accurate measurements of transit time with an excellent time resolution and a high processing gain.

Commonly used transducer frequencies for various path lengths and sediment loads.

Sediment load in g/m³

<table>
<thead>
<tr>
<th>Acoustic path length in m</th>
<th>TD-15/17</th>
<th>TD-200/18</th>
<th>TD-200/8</th>
<th>TD-200/5</th>
<th>TD-28/18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Information

Fluvius TT ECM-IE
Travel time system
with digital signal processing

Specifications
- Acoustic Paths: 1 - 8, length 1 - 1000 m
- Frequency: 15, 28, and 200 kHz
- Accuracy: ± 2% (typical)
- Display: 4 lines, 20 characters
- Datalogger: internal, sampling interval user selectable
- Communication: RS-232, MODBUS, Ethernet, USB
- Inputs: max. 8 x 4-20 mA
- Outputs: max. 4 x 4-20 mA
- 2 x Relay, 2 x Pulse
- Power Supply: 85-264 VAC (50-60 Hz) or 24 VDC
- Battery Backup: integrated, 2 Ah
- Enclosure: Aluminium, wall mounted
- Dimensions: 600 x 400 x 170 mm

Application

The range of application for Fluvius TT runs from small waterways to huge river systems with high suspended solids. By means of acoustic transmission a coded signal is sent through the water and the transit time is calculated providing the speed of river flow. When an acoustic wave propagates in water, part of the energy is damped by friction and suspended solids. This procedure is frequency-related. The higher the frequency, the bigger the damping. For wider distances we use low frequencies as they allow for a considerably better receiver signal.

Single-path system
In its most basic form, the ultrasonic gauge operates with a single pair of transducers.

However, it relies upon a relatively stable velocity profile, essentially unaffected by changes in the relation between water level and flow.

The main flow has to be parallel to the bank. The relationship between measured velocity and discharge is established by hydro-metric calibration.

Crossed-path system
In rivers there is a high risk of cross flow. Its intensity depends mainly on the river’s geometry and if there is an upstream bend in the river.

Although the cross flow does not influence the quantity of the discharge, it may affect the measurement, a second pair of transducers will be necessary.

By crosswise arrangement of four transducers, effects of changing flow direction can be eliminated.

Multi-path system
An even more accurate discharge measurement can be obtained with systems using several planes.

The measured result can be further improved by using a multi path system layering each of the acoustic paths in parallel planes one above the other. This negates having an expensive hydrometric calibration.

This type of system is suitable for applications with large water level fluctuations, reverse flow or a vertical velocity distribution outside the theoretical normal.
Transmitter Fluvius TT ECM-IE

Specifications Transmitter

- **Acoustic Paths:** 1 - 18, length 1- 1000 m
- **Frequency:** 15, 28 and 200 kHz
- **Accuracy:** ± 2% (typical)
- **Display:** 4 lines, 20 characters
- **Datalogger:** internal, sampling interval user selectable
- **Communication:** RS232, MODBUS, USB, Ethernet 10/100 Mbps
- **Inputs:** max. 8 x 4-20 mA
- **Outputs:** max. 4 x 4-20 mA, 2 x Pulse, 2 x Relay
- **Power Supply:** 85-264 Vac (50-60 Hz) or 24 Vdc
- **Battery Backup:** integrated, 2 Ah
- **Enclosure:** Aluminium, wall mounted
- **Dimensions:** 600 x 400 x 170 mm

Mounting Assembly

Standardized mounting devices for any kind of channel geometry like rectangular, trapezoid or natural river banks are available. The flow optimized design protects the transducers against moving objects suspending in the flow stream. It also provides room for connections and protective conduits.

Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>TD-15/17</th>
<th>TD-28/18</th>
<th>TD-200/5</th>
<th>TD-200/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>15 kHz</td>
<td>200 Hz</td>
<td>200 Hz</td>
<td>200 Hz</td>
</tr>
<tr>
<td>Typical channel width:</td>
<td>> 400 m</td>
<td>400 m</td>
<td>100 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Ø 368 mm (14.48 inch)</td>
<td>Ø 183 mm (7.20 inch)</td>
<td>Ø 340 mm (13.38 inch)</td>
<td>Ø 218 mm (8.58 inch)</td>
</tr>
<tr>
<td>Height</td>
<td>121 mm (4.76 inch)</td>
<td>142 mm (5.59 inch)</td>
<td>170 mm (6.69 inch)</td>
<td>109 mm (4.29 inch)</td>
</tr>
</tbody>
</table>

Ultrasonic transducers

The flow optimized design protects the transducers against moving objects suspending in the flow stream. It also provides room for connections and protective conduits.

HydroVision GmbH

Gewerbestraße 46f
87600 Kaufbeuren
Germany

tel. +49 - 8341 - 9662180
fax +49 - 8341 - 9666030
info@hydrovision.de
www.hydrovision.de

© 04/2018 HydroVision GmbH. Specifications are for instruments at the time the literature was printed. Due to continuous product testing and improvement, all specifications are subject to change without notice.